Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Ecol Evol ; 8(2): 251-266, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38182682

RESUMEN

The biodiversity impacts of agricultural deforestation vary widely across regions. Previous efforts to explain this variation have focused exclusively on the landscape features and management regimes of agricultural systems, neglecting the potentially critical role of ecological filtering in shaping deforestation tolerance of extant species assemblages at large geographical scales via selection for functional traits. Here we provide a large-scale test of this role using a global database of species abundance ratios between matched agricultural and native forest sites that comprises 71 avian assemblages reported in 44 primary studies, and a companion database of 10 functional traits for all 2,647 species involved. Using meta-analytic, phylogenetic and multivariate methods, we show that beyond agricultural features, filtering by the extent of natural environmental variability and the severity of historical anthropogenic deforestation shapes the varying deforestation impacts across species assemblages. For assemblages under greater environmental variability-proxied by drier and more seasonal climates under a greater disturbance regime-and longer deforestation histories, filtering has attenuated the negative impacts of current deforestation by selecting for functional traits linked to stronger deforestation tolerance. Our study provides a previously largely missing piece of knowledge in understanding and managing the biodiversity consequences of deforestation by agricultural deforestation.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Filogenia , Bosques , Agricultura
2.
Curr Biol ; 31(20): 4620-4626.e3, 2021 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-34411528

RESUMEN

As humanity is facing the double challenge of species extinctions and climate change, designating parts of forests as protected areas is a key conservation strategy.1-4 Protected areas, encompassing 14.9% of the Earth's land surface and 19% of global forests, can prevent forest loss but do not do so perfectly everywhere.5-12 The reasons why protection only works in some areas are difficult to generalize: older and newer parks, protected areas with higher and lower suitability for agriculture, and more and less strict protection can be more effective at preventing forest loss than their counterparts.6,8,9,12-16 Yet predicting future forest loss within protected areas is crucial to proactive conservation. Here, we identify an early warning sign of subsequent forest loss, based on forest loss patterns in strict protected areas and their surrounding landscape worldwide, from 2000 to 2018.17,18 We found that a low level in the absolute forest cover immediately outside of a protected area signals a high risk of future forest loss inside the protected area itself. When the amount of forest left outside drops to <20%, the protected area is likely to experience rates of forest loss matching those in the wider landscape, regardless of its protection status (e.g., 5% loss outside will be matched by 5% loss inside). This knowledge could be used to direct funding to protected areas threatened by imminent forest loss, helping to proactively bolster protection to prevent forest loss, especially in countries where detailed information is lacking.


Asunto(s)
Conservación de los Recursos Naturales , Bosques , Agricultura , Biodiversidad , Cambio Climático , Extinción Biológica
3.
Nat Food ; 2(6): 442-447, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37118229

RESUMEN

India is the world's largest consumer and importer of palm oil. In an aggressive push towards self-sufficiency in vegetable oils, the Indian government is prioritizing the rapid expansion of domestic oil palm plantations to meet an expected doubling in palm oil consumption in the next 15 years. Yet the current expansion of oil palm in India is occurring at the expense of biodiversity-rich landscapes. Using a spatially explicit model, we show that at the national scale India appears to have viable options to satisfy its projected national demand for palm oil without compromising either its biodiversity or its food security. At finer spatial scales, India's oil palm expansion needs to incorporate region-specific contingencies and account for trade-offs between biodiversity conservation, climate change, agricultural inputs and economic and social security. The policy decisions that India takes with respect to oil palm can substantially reduce future pressures to convert forests to oil palm plantations in the tropics globally.

4.
Ecology ; 102(1): e03223, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33048352

RESUMEN

Climate change and habitat degradation are amongst the two greatest threats to biodiversity. Together, they can interact to imperil species. However, how climate change and land-use change jointly affect the demographic vital rates that underpin population viability remains unknown. Here, using long-term data on birds from the increasingly degraded and rapidly warming Himalayas, we show that survival trends over time are linked to species' elevational ranges in primary, but not in selectively logged forest. In primary forest, populations at their cold-edge elevational range limit show increases in survival rates over time, whereas those at their warm-edge elevational range limit suffer survival declines. This pattern is consistent with species tracking favorable climatic conditions over time, leading to improved demographic outcomes at progressively higher elevations with climate change, which in turn lead to upslope range shifts. In logged forest, however, survival rates remain relatively constant over time. This suggests that, in response to climate change in the long term, individuals of the same species can maintain demographic vital rates in higher-elevation primary forest, but not in logged forest. This is the first demonstration of how two of the most disruptive anthropogenic influences on biodiversity interact to threaten survivorship in natural populations. Ignoring interactions between climate change and land-use change can potentially undermine accurate forecasting of the future of species in an increasingly warm and degraded world. Importantly, large tracts of well-protected primary forests across Earth's tropical elevational gradients may be essential to enable tropical montane species to persist in the face of climate change.


Asunto(s)
Cambio Climático , Clima Tropical , Animales , Biodiversidad , Aves , Demografía , Ecosistema , Bosques , Humanos
5.
Ecol Evol ; 10(6): 2803-2812, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32211157

RESUMEN

Selective logging dominates forested landscapes across the tropics. Despite the structural damage incurred, selectively logged forests typically retain more biodiversity than other forest disturbances. Most logging impact studies consider conventional metrics, like species richness, but these can conceal subtle biodiversity impacts. The mass-abundance relationship is an integral feature of ecological communities, describing the negative relationship between body mass and population abundance, where, in a system without anthropogenic influence, larger species are less abundant due to higher energy requirements. Changes in this relationship can indicate community structure and function changes.We investigated the impacts of selective logging on the mass-abundance scaling of avian communities by conducting a meta-analysis to examine its pantropical trend. We divide our analysis between studies using mist netting, sampling the understory avian community, and point counts, sampling the entire community.Across 19 mist-netting studies, we found no consistent effects of selective logging on mass-abundance scaling relative to primary forests, except for the omnivore guild where there were fewer larger-bodied species after logging. In eleven point-count studies, we found a more negative relationship in the whole community after logging, likely driven by the frugivore guild, showing a similar pattern.Limited effects of logging on mass-abundance scaling may suggest high species turnover in logged communities, with like-for-like replacement of lost species with similar-sized species. The increased negative mass-abundance relationship found in some logged communities could result from resource depletion, density compensation, or increased hunting; potentially indicating downstream impacts on ecosystem functions. Synthesis and applications. Our results suggest that size distributions of avian communities in logged forests are relatively robust to disturbance, potentially maintaining ecosystem processes in these forests, thus underscoring the high conservation value of logged tropical forests, indicating an urgent need to focus on their protection from further degradation and deforestation.

6.
Biol Rev Camb Philos Soc ; 95(4): 889-910, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32097520

RESUMEN

Mixed-species animal groups (MSGs) are widely acknowledged to increase predator avoidance and foraging efficiency, among other benefits, and thereby increase participants' fitness. Diversity in MSG composition ranges from two to 70 species of very similar or completely different phenotypes. Yet consistency in organization is also observable in that one or a few species usually have disproportionate importance for MSG formation and/or maintenance. We propose a two-dimensional framework for understanding this diversity and consistency, concentrating on the types of interactions possible between two individuals, usually of different species. One axis represents the similarity of benefit types traded between the individuals, while the second axis expresses asymmetry in the relative amount of benefits/costs accrued. Considering benefit types, one extreme represents the case of single-species groups wherein all individuals obtain the same supplementary, group-size-related benefits, and the other extreme comprises associations of very different, but complementary species (e.g. one partner creates access to food while the other provides vigilance). The relevance of social information and the matching of activities (e.g. speed of movement) are highest for relationships on the supplementary side of this axis, but so is competition; relationships between species will occur at points along this gradient where the benefits outweigh the costs. Considering benefit amounts given or received, extreme asymmetry occurs when one species is exclusively a benefit provider and the other a benefit user. Within this parameter space, some MSG systems are constrained to one kind of interaction, such as shoals of fish of similar species or leader-follower interactions in fish and other taxa. Other MSGs, such as terrestrial bird flocks, can simultaneously include a variety of supplementary and complementary interactions. We review the benefits that species obtain across the diversity of MSG types, and argue that the degree and nature of asymmetry between benefit providers and users should be measured and not just assumed. We then discuss evolutionary shifts in MSG types, focusing on drivers towards similarity in group composition, and selection on benefit providers to enhance the benefits they can receive from other species. Finally, we conclude by considering how individual and collective behaviour in MSGs may influence both the structure and processes of communities.


Asunto(s)
Conducta Animal/fisiología , Biodiversidad , Aves/clasificación , Peces/clasificación , Mamíferos/clasificación , Reptiles/clasificación , Animales , Técnicas de Observación Conductual , Evolución Biológica , Aves/fisiología , Ingestión de Alimentos/fisiología , Conducta Alimentaria/fisiología , Peces/fisiología , Mamíferos/fisiología , Conducta Predatoria/fisiología , Reptiles/fisiología , Conducta Espacial/fisiología , Factores de Tiempo
7.
Ambio ; 48(2): 160-171, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29949080

RESUMEN

A large number of economically disadvantaged people live around protected areas. Conservation efforts that focus on poverty alleviation, work on the premise that an increase in household wealth decreases use of forest resources. We surveyed 1222 households across four tiger reserves to test the paradigm that an increase in assets leads to reduced forest use and we also assess the effects of other socio-economic factors. We find that increase in assets may reduce Non-timber Forest Product (NTFP) collection, but may not necessarily reduce livestock numbers or use of wood as a cooking fuel. Households that faced more economic setbacks were more likely to state that they wanted more livestock in the future. Education is positively associated with choosing Liquefied Petroleum Gas as a cooking fuel in the future. We find site and resource-specific variation. Fifty percent of all households (range across sites: 6-98) want to collect NTFP while 91% (range: 87-96) want to retain or own more livestock over the next 5-10 years. Understanding current and future resource use will help plan context-specific conservation efforts that are better aligned with reducing specific pressures around protected areas.


Asunto(s)
Conservación de los Recursos Naturales , Tigres , Animales , Bosques , Ganado , Pobreza
8.
Proc Biol Sci ; 285(1874)2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29514971

RESUMEN

Longstanding theory predicts that competitive interactions set species' range limits in relatively aseasonal, species-rich regions, while temperature limits distributions in more seasonal, species-poor areas. More recent theory holds that species evolve narrow physiological tolerances in aseasonal regions, with temperature being an important determining factor in such zones. We tested how abiotic (temperature) and biotic (competition) factors set range limits and structure bird communities along strong, opposing, temperature-seasonality and species-richness gradients in the Himalayas, in two regions separated by 1500 km. By examining the degree to which seasonal elevational migration conserves year-round thermal niches across species, we show that species in the relatively aseasonal and speciose east are more constrained by temperature compared with species in the highly seasonal west. We further show that seasonality has a profound effect on the strength of competition between congeneric species. Competition appears to be stronger in winter, a period of resource scarcity in the Himalayas, in both the east and the west, with similarly sized eastern species more likely to segregate in thermal niche space in winter. Our results indicate that rather than acting in isolation, abiotic and biotic factors mediate each other to structure ecological communities.


Asunto(s)
Distribución Animal , Biota , Aves/fisiología , Animales , Evolución Biológica , India , Temperatura
9.
Sci Rep ; 5: 11569, 2015 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-26108368

RESUMEN

Understory avian insectivores are especially sensitive to deforestation, although regional differences in how these species respond to human disturbance may be linked to varying land-use histories. South Asia experienced widespread conversion of forest to agriculture in the nineteenth century, providing a comparison to tropical areas deforested more recently. In Sri Lanka and the Western Ghats of India, we compared understory insectivores to other guilds, and to insectivores with different vertical strata preferences, both inside mixed-species flocks and for the whole bird community. Overall species richness did not change across the land-use gradient, although there was substantial turnover in species composition between land-use types. We found that the proportion of species represented by insectivores was ~1.14 times higher in forest compared to agriculture, and the proportion of insectivores represented by understory species was ~1.32 times higher in forests. Mass-abundance relationships were very different when analyzed on mixed-species flocks compared to the total community, perhaps indicating reduced competition in these mutualisms. We show that South Asia fits the worldwide pattern of understory insectivores declining with increased land-use intensity, and conclude that these species can be used globally as indicator and/or umbrella species for conservation across different disturbance time scales.


Asunto(s)
Aves/fisiología , Ecosistema , Insectos/fisiología , Árboles/fisiología , Agricultura/métodos , Agricultura/tendencias , Animales , Biodiversidad , Aves/clasificación , Conservación de los Recursos Naturales , Bosques , Geografía , Humanos , India , Modelos Teóricos , Densidad de Población , Dinámica Poblacional , Conducta Predatoria/fisiología , Especificidad de la Especie , Sri Lanka
10.
Am Nat ; 180(6): 777-90, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23149402

RESUMEN

Competition theory predicts that local communities should consist of species that are more dissimilar than expected by chance. We find a strikingly different pattern in a multicontinent data set (55 presence-absence matrices from 24 locations) on the composition of mixed-species bird flocks, which are important subunits of local bird communities the world over. By using null models and randomization tests followed by meta-analysis, we find the association strengths of species in flocks to be strongly related to similarity in body size and foraging behavior and higher for congeneric compared with noncongeneric species pairs. Given the local spatial scales of our individual analyses, differences in the habitat preferences of species are unlikely to have caused these association patterns; the patterns observed are most likely the outcome of species interactions. Extending group-living and social-information-use theory to a heterospecific context, we discuss potential behavioral mechanisms that lead to positive interactions among similar species in flocks, as well as ways in which competition costs are reduced. Our findings highlight the need to consider positive interactions along with competition when seeking to explain community assembly.


Asunto(s)
Aves/anatomía & histología , Aves/fisiología , Tamaño Corporal , Conducta Alimentaria , Animales , Conducta Competitiva , Ecosistema , Modelos Biológicos , Conducta Social
11.
PLoS One ; 7(7): e42071, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22848706

RESUMEN

Using mixed-species bird flocks as an example, we model the payoffs for two types of species from participating in multi-species animal groups. Salliers feed on mobile prey, are good sentinels and do not affect prey capture rates of gleaners; gleaners feed on prey on substrates and can enhance the prey capture rate of salliers by flushing prey, but are poor sentinels. These functional types are known from various animal taxa that form multi-species associations. We model costs and benefits of joining groups for a wide range of group compositions under varying abundances of two types of prey-prey on substrates and mobile prey. Our model predicts that gleaners and salliers show a conflict of interest in multi-species groups, because gleaners benefit from increasing numbers of salliers in the group, whereas salliers benefit from increasing gleaner numbers. The model also predicts that the limits to size and variability in composition of multi-species groups are driven by the relative abundance of different types of prey, independent of predation pressure. Our model emphasises resources as a primary driver of temporal and spatial group dynamics, rather than reproductive activity or predation per se, which have hitherto been thought to explain patterns of multi-species group formation and cohesion. The qualitative predictions of the model are supported by empirical patterns from both terrestrial and marine multi-species groups, suggesting that similar mechanisms might underlie group dynamics in a range of taxa. The model also makes novel predictions about group dynamics that can be tested using variation across space and time.


Asunto(s)
Aves , Ingestión de Alimentos , Modelos Teóricos , Conducta Predatoria , Seguridad , Animales
12.
J Anim Ecol ; 79(5): 948-54, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20497487

RESUMEN

1. Animals group for various benefits, and may form either simple single-species groups, or more complex multi-species associations. Multi-species groups are thought to provide anti-predator and foraging benefits to participant individuals. 2. Despite detailed studies on multi-species animal groups, the importance of species in group initiation and maintenance is still rated qualitatively as 'nuclear' (maintaining groups) or 'attendant' (species following nuclear species) based on species-specific traits. This overly simplifies and limits understanding of inherently complex associations, and is biologically unrealistic, because species roles in multi-species groups are: (i) likely to be context-specific and not simply a fixed species property, and (ii) much more variable than this dichotomy indicates. 3. We propose a new view of species importance (measured as number of inter-species associations), along a continuum from 'most nuclear' to 'least nuclear'. Using mixed-species bird flocks from a tropical rainforest in India as an example, we derive inter-species association measures from randomizations on bird species abundance data (which takes into account species 'availability') and data on 86 mixed-species flocks from two different flock types. Our results show that the number and average strength of inter-species associations covary positively, and we argue that species with many, strong associations are the most nuclear. 4. From our data, group size and foraging method are ecological and behavioural traits of species that best explain nuclearity in mixed-species bird flocks. Parallels have been observed in multi-species fish shoals, in which group size and foraging method, as well as diet, have been shown to correlate with nuclearity. Further, the context in which multi-species groups occur, in conjunction with species-specific traits, influences the role played by a species in a multi-species group, and this highlights the importance of extrinsic factors in shaping species importance. 5. Our view of nuclearity provides predictive power in examining species roles in a variety of situations (e.g. predicting leadership in differently composed communities), and can be applied to examine a broad range of ecological and evolutionary questions pertinent to multi-species groups in general.


Asunto(s)
Aves/clasificación , Ecosistema , Animales , Conducta Animal , Evolución Biológica , India , Dinámica Poblacional , Especificidad de la Especie , Árboles , Clima Tropical
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...